History, Performance and Benefits of Cold Recycling

Stephen A. Cross, Ph.D., P.E. Technical Director Asphalt Recycling & Reclaiming Assoc.

COLD IN-PLACE RECYCLING DEFINITION

Cold In-Place Recycling (CIR) **Involves Milling the Existing Asphalt** Surfacing to a Specified Depth, Sizing the Milled Material, Adding Various **Additives (Emulsion, Foam, Lime** Slurry, Cement), Mixing the RAP and **Additives, Laying and Compacting** the Recycled Material.

Pavement Management

Recycling and Reclaiming Strategies and Their Effects

M&R Category	Strategy	Method:	СР	HIR	CR	FDR
Construction	New		Star Star			
See Street Street	Reconstruction		\checkmark			\checkmark
Rehabilitation	Major (Heavy)		\checkmark	Salate She	√*	\checkmark
	Structural Overlay		\checkmark	√*	√*	√*
	Minor (Light)	Davement	\checkmark	\checkmark	\checkmark	
Maintenance	Preventive >	Preservation	\checkmark	\checkmark	\checkmark	
	Routine		\checkmark			
	Corrective (Reactive)		\checkmark	\checkmark	√	
	Catastrophic		\checkmark			

- With HMA Overlay
- CR: CIR & CCPR

EARLY CIR HISTORY

- First Attempts At The "Train" Process
 Were In The Early 80's In California And Arizona
- In Mid 80's, Other States Such As Oregon And New Mexico Began Using The Process
- Kansas and New York Began To Use The Process As Well
- **CIR is Routine Procedure for Many States**

IMPROVEMENTS TO THE PROCESS

- Early Research by Gary Hicks and Gordon Mckeen Was Instrumental In the Growth of the Process
- ARRA Contractors Worked Diligently to Craft Ever Improving Specifications for Agencies
- Improvements In Equipment and Additives Have Contributed to a Better Quality Product

Multi-Unit Trains

Most Original Work Performed with Long Trains

Classes of CIR

- Multi-Unit Train: Pulverize, Screen, **Crush, Add Recycling Agent Based** on RAP Weight & Mix in Pugmill Two-Unit Train: Pulverize, Add **Recycling Agent Based on RAP** Weight & Mix in Pugmill Single Unit Train: Pulverize, Add **Recycling Agent – All in Cutting**
 - Chamber of Milling Machine

Modern Multi-Unit Train

Two-Unit Train

Single Unit Train

Placement/Laydown

Mixture is deposited in windrow and placed in paver with pick-up device or deposited directly into paver

CIR – Placement & Compaction

- CIR is harder to compact than HMA (more viscous)
 Heavy Pneumatic roller(s)
- Vibratory Steel Wheeled Roller(s)

Wearing Surface

Chip Seal
Slurry Seal
Micro-Surfacing
Cold Mix Overlay
Hot Mix Overlay

Cold Central Plant

Cold Central Plant Recycling (CCPR) Is a Viable Alternative When Stockpiles of High Quality RAP are Available or When it is Not Possible to In-Place Recycle the Pavement.

CCPR - Process

- Aggregate Feeding/Blending
- Screening/Crushing
- Liquid Metering Systems
- Pugmill Mixing

CCPR - Applications

- Expanded Asphalt (foam) or Emulsified Asphalts are used as Recycling Agent.
- Different Emulsion Formulations are used for Stockpiling versus Immediate Lay.

Bituminous Recycling Agents

Emulsified Asphalts

- Engineered Emulsions
- Solvent Free Emulsions (CSS)
- High Float Emulsions
- With or Without Polymers
- Expanded Asphalt (Foam)
- Cement or Lime can be added in small quantities (Recycling Additives) to:
 - Improve Moisture Resistance
 - Decrease Curing Time
 - Increase Initial Strength

CCPR - Benefits

- Environmental. An excellent use of excess asphalt millings saving valuable natural resources.
- High Production. Allows for quick construction time.
- Economic. Depending on the cost of the RAP, cost savings can range from 25% to 75% versus conventional hot or cold mix.
- Mix Properties. Additional aggregates/additives may be added for enhanced mix performance.
- Mix Formulations. With proper additive formulation, the mix may be used in a wide range of applications.

Keys to Long Life CIR

- Project Selection And Site Investigation
- Informed Pavement Design
- Proper Material Selection And Design
- Experienced Contractor And Proper Construction Conditions

Thickness Design

Wearing Surface Must be Designed to Carry Anticipated Traffic

- AASHTO Procedure: CR "a" coef. of 0.30-0.32 (reported range 0.25 to 0.35)
- Pavement ME (MEPDG)
 - **CIR & FDR Not Getting Full Credit**

NCHRP 9-51 Characterization of Cold In-Place Recycled and Full Depth Reclamation Materials for Mix and Structural Pavement Design

Recent Survey of 13 Agencies using Partial Depth CIR in USA

> 10 of 13 Agencies Reported No Official **Traffic Restrictions on CIR Usage** Majority of CIR has been Performed on Low to Moderate Trafficked Pavements > 6 of 13 Agencies Reported using CIR on Interstate Pavements > Performance Studies Indicate Traffic had no Adverse Affect on Performance

No Traffic Restrictions

Chesner, et al. NYSDOT CIR (TRB 2011) Higher traffic = longer service life Attributed to better quality of base NCHRP Synthesis 421 Recycling and **Reclamation of Asphalt Pavements Using In-Place Methods** > Over utilized on lower volume pavements >Under utilized on higher volume pavements

CIR Performance

Nevada

Use FDR & CIR extensively as part of their Pavement Management System

- Top 5 States Pavement Smoothness
- Kansas

Performing CIR Over 30 years

- Top 5 States in Pavement Smoothness
- New York CIR Over 300 projects

Vermont

CIR longer service life than Mill & Fill

Sustainability NYSDOT (C-06-21)

CIR Sustainability

- Alkins, Lane & Kazmierowski, TRR 2084
- Comparison of CIR to equal thickness of Mill & Fill resulted in:
 62% less reduction in aggregate resources
 52% reduction CO₂ emissions
 54% reduction NO_x emissions
 - 61% reduction SO₂ emissions

CR Advantages

- Cost Effective
- Conserves Energy
- Conserves Materials
- Improves Mix Characteristics

- Improves serviceability and increases structural capacity
- Reduces Construction Time
- May Be Performed Under Traffic

Thank You

